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Abstract. The reliability of maintained systems is considered.

A “continuity theorem ”~ is presented which states that the stochastic

behavior or a maintained system depends continuously on the stochastic

behavior of its components. Examples of maintained systems with IFR

component lifetimes and exponential repair times are presented for

which time until first system failure is not NBtJ.
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Several authors (1,2,4,9,12,13] consider coherent systems in which

some of the components are repairable. A general model is as follows

[2]: Component positions 1 through k are filled with repairable

components with lifetime distributions F . and repair time distributions

G1 , i = 1,2,... ,k. Components k+l through k+m are nonrepairable

with lifetime distributions F . , i = k+l,. . . ,k+m. Components function

independently of each other, continuing to function while other components

are being repaired. Barlow and Proschan (1976 ) show that the time Until first

system failure (starting with all new components) is NBU when the repair times

are DFR and component lifetimes are exponential. They conjecture that

this is also true for IFR component lifetimes. The purpose of this paper

is to present couriterexamples to this conjecture. Other examples will

also show that increased repair rates do not necessarily result in greater

system reliability or availability for repairable systems with IFR components. In

the course of verifying these examples a “continuity theorem” for coherent

maintained systems is presented , which in effect says that systems with

the same structure function and approximately equal component distributions

will have approximately the same system behavior.

1. Deterministic Examples ( l—out-of—2 systems ).

Consider a 1-out-of-2 system with independent component lifetimes

and repair times. Following the notation of the introduction, let

F
1
(t) =

G1
(t) = 1 - exp( — A 1t)

(1.1)
F2
(t) = 1

~[a2 ,
co) Ct)

G2
(t) = 1 — exp( — X 2t) 

- — - -—~~~~~-~~~~~~~~~~“- .~~~~~~~~~~~~--. — . .
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Note that both F
1 

and F2 
are IFR as defined for arbitrary distributions

by Barlow and Proschan ( 1975), p. 54. At time 0 the system consists of

new components. Let H be the cdf of the time until first system failure , L. The

reliability of the system for the period [O ,t) is R(t) = 1 - H(t) = 11(t).

The system is NBU if H( s+t)  < H(t)H(s) for all s,t > 0. Availability

of the system, A (t), in (O ,t] equals the amount of time which the system

functions during [O,t); it is a random variable. (P(A(t) t) = 11(t).)

We consider two special cases: the first is not NBU ; in the second case the

reliability decreases for certain increases in repair rate.

i) Let the constants in equation (1.1) be:

a1
10 A

1 = l  a2 = 9  A2 
0.1 (1.2)

Let R
1 
(R2) be the first repair time of the first (second) component,

then

PC L > 11 ) PC R2 
< 1 ) = 1 — exp(—X

2
) = .095

and

PC L > 22 L > 11 ) > PC 2 ( R1 
< 8 R2 < 1

= P( 2 < R1 
< 8

= exp(-2A 1
) - exp( -8A 1)

= .135

Thus

PC L > 22 L > 11 ) 11(22)111(11) > 11(11)

and the system is not NBU.

ii) Let the constants in equation (1.1) be:

a1 
= 2 A

1 
variable a2 

= 4 A
2 

= 0.1 (1.3)

Again letting 1. equal the time until first system failure and R
1 

(R
2

)

equal the first
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repair time for the first (second) component, then the event { L > 5 }

is equivalent to the event ( 1 < R1 < 2 ) U { 0 < R1 < 1 , 0 < R 2 < R1 
}.

Using the independence of R1 
and R2 gives

P( L > 5 ) = 1 - exp(-2A1
) - A1(A 1+X2

) 1(l-exp(-X
1-X 2

))

If A 2 
= 0.1 then the following table g ives P (  L ) 5 ) for various

values of A1:

0.5 0.6 0.7 0.8 0.9 1.0

P (  L > 5 ) .256 .267 .272 .27 1 .266 .258

Thus increasing A 1 does ~ot necessarily increase (stochastically) the

time until f i r s t  system failure. Nor does it necessarily increase

availability because P (  A ( S )  = 5 ) = P C  L > 5 ) .

2. A Continuity Theorem for Maintained Systems.

The examples in the previous sections are quite special: their

components have deterministic lifetimes. We desire examples with random

lifetimes which are IFR; in particular, it would be nice to find an

example with absolutely continuous lifetime distributions and furthermore

with bounded failure rates. To verify the existence of such examples

the following theorem is useful.

Continuity Theorem 2.1. A coherent system 
~~ 

consists of k repairable

components and m nonrepairable components with component lifetime

distributions F
0~~ , i=l,2,. .. ,k+xn, and component repair time distributions

G , i=l ,2,...,k, such that F0 
(0) =0 and G ~(O) =0. At time 0

0, ,1 0,

all components are new. Let L0 
be the time until first system failure

and A
0
(t) be the system availability in (0,t]. Suppose that the system
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Z has the same structure function as with component lifetime and

repair distributions F , i=l ,2,. ..,k+m , and G , i=l,2,.. . ,k.

Suppose that F F and G G as ~~~~~ for all i. Letn , l 0 , i n , i 0 , i.

A~ (t) equal the system availability in [0 ,tJ  of 
~~~~
. Then A Ct)

A0 (t)  as ~~~~~ Let L~ be the time until f i rs t  system failure of E .

If d i f fe rent  components of have simultaneous state-transitions with

probability 0 , then L as ~~~~~ “ “ signifies convergence

in distribution.

Proof: For integers n � 0 , 1< i� k , j � l , let Q~~~1 
be independent

lifetimes with cdf F and R~ independent component repair timesn, l n ,i

with cdf G . Define :1
n ,i.

T2!. = (Q
) + R ~ .)  , ~~~~~ T

22
. + Q

1
~~~~~ j= ]. ~~~ n,3. fl ,i n ,i.

1=0 ,1,2 For each i ,n , 1T~~~. ,  j =0 , 1, 2 , . . .}  is an alternating

renewal process. Letting n-’~~ , the finite dimensional distributions of

these sequences converge to those of {T~~~ j 0 ,l,2,...} , for each i=

l,2,...,k, because the summands converge in distribution. The f.d.d.’s

are convergence-determining for the product topology on R ((3], p.19)

thus

~~~~~ j=O.l,2,.. .} => CT~~J~. j=0,l,2,
...}

in the product topology as n-~~ for i=l,2,. . . ,k. It follows from renewal

theory that these processes have paths almost surely in
El

S {(t ,t,,...) E R :  0 t  �t �t �... , 1im t . .’o~}0 ~ 0 1 2

In addition , because F (0) = 0 and 00 ~ 
(0) 0 , T has paths a lmost0,i , 0, 1

surely in
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S = Ut ,t , . . .)  E R :  0 t  < t  < t  < ... , limt. =~~~}0 0 1  0 1 2

Let iT denote the product topology on R and also its relat ivization

to S. Let p denote the measures induced on (S,O(ni ) by T
n,i n ,1

NOw consider another representation of the above alternating renewal

process: for integers n�0 and l� i ~~k, define

(1, T2k . < t <n,1 n,i.

X .(t) =1n,i

0, T2k~~ ~ t < T2
~~~

2

~ n,i n,i

k=0 ,l ,2 Thus if the 1th 
component of E is functioning at time t ,

X . ( t) l; if it is under repair, X (t)=0. The processes X are
n,i. n,i n ,l

called “operating processes.” Because 4.its T~ = ~ a.s., X will be
~~~~~~~ 

n,i n,2.

random functions in D[0,co), a.s. In particular , let B(0,°’) c D(0,~~) be

the binary 0—1 functions, then X . takes values in B (O ,~ ). Endow

B(0,~ ) with a topology for which convergence is defined as follows:

X +X  if there exists a sequence of continuous one-to—one mappings A

of the interval [0,~~) onto itself such that x =xoA and for each ‘~>0

A-~ 0~~~’M 
JA (t)-t~ = 0. This topology is th: relativization to

B[0,C0) of Skorohod ’s 
~l 

topology defined by Stone (1963) on D(0,~ );

cf. Whitt (1971, 1972) and Lindvall (1973). Let V . be the measures
fl, 1

induced on CB [0 ,~ ) ,  a(J
1)) by the processes X

n i ~

Let f:(S,TT)-’(S(0,~ ), J1
) be defined as follows: f(s) x, where

s=C t0,t1,...) and x(t)=l if t
2k~

t<t2k+l and 0 otherwise, k=0,l,2

It can be shown that f is continuous on S
0. (The function f maps con-

vergent sequences into convergent sequences. Since CR ,TT ) is metrizable ,

this implies continuity of f; see (5], X.6.3, IX.5.5). Furthermore,

_ _



Vn i  ~n , i ~~~~ Since 
~~~~ ~ 0 , i and 1i0~~~(S

0
) = 1 , it follows by the continuous

mapping theorem ((3], p. 29) that V . V0~~
, cf. Whitt (1973).

Now consider “operating processes” associated with the nonrepair&ble

components of the system : For integers n�0 and i~~k+l, k+2, ... , k-s-rn

let Q . be independent lifetimes with cdf’s F . Define
n,i n,i

1, t < Q
.X .(t ) = 

fl , i
n , i 0 , t � Q

fl u ]-

Let V . , i=k+l , k+2, ... , k+m , be the measures induced on
flu].

( B( 0 ,ao ) , a( J , ) )  by these processes. As above it can be shown that

V .n,i O ,i

Now consider the process ~~~(t)  = (X~~1
(t)~ ... ~~~~~~~~~~ t~0,

on the product space (B~~~(O,°~), ~ 
of k+m copies of (8(0,00), J1

).

It follows from the fact that individual components behave independently

of one another and consequently from properties of product measures

((3], p. 20) that X in the topology.

Now consider the coherent structure of the systems E and ~0 n

The state of the system is described by a binary k+rn dimensional vec-

tor, for example, x = (1, 1, 0, 1, 0, ...). Let Dc{O,l}~~
” be

the set of states for which the system is “down”. Let U = DC be the

set of states for which the system is “up”.

k+m
Define the real-valued function A

t 
on B [0,00):

= f l
~
j (x(s))ds.

t
= 
~ f 1 (x(s))ds

0 U —uCU

In (0,t+lj there exist a finite number of transitions; suppose x has

~k+m
transitions in this interval. If x L x then, given £~0, no tram- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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sition—times of x in [0,t+l) are perturbed by more than c from

those of x for sufficiently large n. This means that each visit to

u can be shortened or lengthened by at most 2c, and since there can be

at most n visits to u it follows that
x

I l ( x ( S ) ) d S  — 1 (x Cs))ds < 2cn

for sufficiently large n. Because C is arbitrary it follows that

u r n  f 1 Cx (s))ds = f  1 (x(s))ds.
u — n  U —

0 0

Thus At 
is continuous everywhere.

Define the real-valued function L on B~~
m
(O ,00):

= inf{t:x(t)E D}.

= mm inf {t:x(t) = dl
d~D 

—

= mm L ( x ( . ) ) .
thD d —

We shall show that, for all d, Ld is continuous at all points x ( )

which have rio simultaneous state-transitions by two components. Let x

be such a point. Suppose Ld
(x(.)) = t~. Each component can have only

finitely many state-transitions in [0 , t~
+l] and since no simultaneous

transitions occur there must be a mimimum distance, 6>0 , between two

~k+m
transitions. Now suppose ~~ x , then by definition there exist

A , i=1 , 2, ..., k+m and N such that x . = x.  e A . and for
n,i C n ,1 1 flu].

naN
~
, ~A~~~ (s) - si 

< C � 6/2 for 0 ~ s ~ 
t,~ + 6/2. Since the transitions

of x are more than a distance 6 apart, it follows that the transitions

in (0, t I must be the same for x and x , n�N ; the times of thex — -n C

transitions may be slightly shifted but the sequence of transitions will

be identical. Thus x will first reach d in the interva l [t -C ,

—S. --- ~..___~_~_ __ — -



t +e] and thus ~L Cx ) - L Cx) I < C, for n�N . Thus L is continuous
x d—n d —  £ d

at x. This also implies L is continuous at x , a path with no simul-

taneous transitions. If is the operating process of then L is

- k+m
continuous a.s. relative to the measure induced by on B 10,00),

providing that no simultaneous transitions occur.

Invoking the continuity theorem of the theory of weak convergence

([31 , Theorem 5.1) g ives , as n-’~~,

L L(X (s)) L(X ( ) )  L
n —ci —0 0

and

A Ct) A CX ( ) )  A (X (s)) A Ct)
n t —ri t—0 0

where “ “ signifies equivalent probability laws (or distributions) .

This completes the proof of the Continuity Theorem 2.1.

It is possible to extend Theorem 2.1 to systems with instantaneous

failures (F
0~~~

(0) > 0) as follows: For integers n � 0 , l � i � k , define

*
F . = (F .—F . (0))/(1-F (0) )
n,1. n,i flu]. fl,i

00

* 
.
—l

G . = Z F . (O)-’ (1—F .(0))G
n,i n,i.

where G is the j-fold convolution. A system with lifetime and repairtime

* *cdf’s F . and G . will have the same distributions of time until first
fl ,1 n,i .

system failure and system availability as a system with cdf’s 
~~~~ 

arid

G . .  If F .~~~F ., G .~~~G ., arid F .(0) -’~ F . (0) as n-~
00 ,n,i. n,i 0,i. n,i 0,i. — n,i

then F
~~i ~ 

F
0~~ and 

~~~~ ~ 
G3~~ and Theorem 2.1 is applicable.

Barlow arid Proschan(l975), chapter 7, describe some other models for

maintained systems for which analogous continuity theorems should hold.

Other continuity theorems may be found in 16,7,8,10,15,17,19,20] and

the references contained therein. The processes X , n ~ 0 , in the proof

of Theorem 2.1 are actually generalized semi-Markov processes; thus Theorem
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2.1 is contained as a special case of continuity theorems proved by Whitt

(1976) and Hordij k and Schassberger(l976) .  However the proof of 2.1 is

much simpler than that required for the general processes treated in these

papers.

3. Examples with absolutely continuous distributions which have

bounded fa i lure  rates.

The examples in section 1 were pathological in the sense of having

degenerate distributions.  In this section the existence of less pathological

examples is verified using the continuity theorem (Theorem 2.1). In particuaar ,

the degenerate distributions in the preceding examples are replaced

by distributions which are absolutely continuous and furthermore

whose failure rates are bounded away from 0 and 00~ This will be

accomplished by approximating the degenerate distributions by smooth

ones.

Lemma 3.1. Let F
0
(t) = l

(a ,00)
(t
~~ 

Define the continuous polygonal

failure rate functions r Ct) ,a,n

—l —ln , t < a—n

ra,n (t) = linear, a-n
1 < t < a+n 1

n, a+n~~ < t

Let F (t) = 1 - exp( _j
~ 

r (s)ds ). Then F
n ~ F0 as n-’~~.

Proof: Follows immediately from definitions.

Now we reconsider example Ci) of section 1. Let be a l-out-of--2

system with distributions given by (1.1) and (1.2). Let Z be a

l-out—of-2 system : component #1 has failure rate function r (•)
a1

,n

and component #2 has failure rate function r ( )  (as defineda2 ,n

in Lemma 3.1). Let the repair distributions of Z be identical to 

--- :-~~~~~~~~~~~~~ .
—-— ..
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those of Then the Continuity Theorem 2.1 and Lemma 3.1 imply

I. ~~ L , a s n - * 00
n 0

It is easy to see that F
L 

is continuous at t = 11 and 22.
0

Thus 
~~~ 

F
L 

(t) = F
L 

Ct) for t = 11, 22.  This , plus the fact that
n 0

F
L 

(22) > [F
1~ 

(11)1 2, implies that there exists an N such that for

n > N , F
L

(2 2)  > EFL (llfl . Thus there exists a l-out-of-2 system ,

E N , whose component lifetimes are IFR Cwith rate bounded away from

0 and00) and exponential repair times such that system l ifet ime is not

~BU.

In light of this example for bounded failure rates, there may

not exist any useful general restrictions on component lifetime

distributions which guarentee NBU system lifetime , except the assumption

of Barlow and Proschan ( 1976 ) of exponential lifetime distributions.

A similar analysis based on example (ii) of section 1 verifies

the existence of a similar l-out-of-2 system with nondegenerate IFR

component lifetimes and exponential repair times for which increased

repair rates lead to lower system reliability and availability .

Acknowledgement. I am grateful to the referee for pointing out some

mistakes in an earlier version of this paper and for providing some of

the references to other continuity theorems.
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